GENERAL INTRODUCTION

Functional anatomy of the placenta is a study of form and function that highlights great diversity amongst the species. Dr K Benerischke has spent a lifetime studying comparative placentation and his ebook has an extensive listing of placentas (http://placentation.ucsd.edu/homefs.html).

The fundamental purpose of the placenta is to provide for the fetus.

The three main membranes are the chorion, allantois and amnion. The common names of the membranes you see are Chorioallantois and Amnion (which is actually the allantoamnion).

Figure 1. Normal postpartum endometrial surface of the mare (upper), cow (middle) and bitch (lower).

Figure 2. Placental membranes and bovine fetus.

The amnion is a smooth translucent membrane that surrounds the fetus. It holds amniotic fluid around the fetus. This fluid is produced by the amniotic membrane, and within it floats squames from the epidermis of the fetus. The fetal side can usually be identified by the presence of epidermal tissue known as amniotic plaques. These are most numerous on the umbilical cord.

Figure 3. Amniotic plaques on the fetal side of the amnion. Bovine.

Mineral is present often in the chorioallantois in early pregnancy.
Amniotic fluid is swallowed by the fetus and post partum sampling of amniotic fluid is possible by taking stomach content. Fetuses do not inhale amniotic fluid past the larynx – unless they are distressed. Likewise, meconium is not normally present in the amniotic fluid unless the fetus is distressed and defecates. Fetuses covered with meconium are said to have ‘foetal diarrhea’.

The chorion is the layer that contacts the mother – and in most species it is fused with the allantois. The chorioallantois is thus formed.

The allantoic cavity, where it exists, contains fetal urine, and other fluids that arise from the membrane itself. The final part of the placenta is the umbilical cord. This structure contains 2 umbilical arteries, an umbilical vein and a urachus, which empties into the allantois. The cord is often covered with amniotic plaques, and is occasionally gently twisted.

THE PIG

The membranes are almost completely fused in the placenta of pigs. The chorionic surface of the porcine placenta has small microscopic projections or villi. They are barely recognizable grossly. Chorionic cysts are found in the placenta of pigs – these are where the secretion of uterine glands is trapped. Prominent mineralization of the membranes is seen and there are necrotic tips where adjoining placentae touch.

THE HORSE

In the horse, the amnion and the chorioallantois are completely separate. The chorionic surface is microcotyledonary and gives it a luxuriant velvety appearance.

THE PIG

The membranes are almost completely fused in the placenta of pigs. The chorionic surface of the porcine placenta has small microscopic projections or villi. They are barely recognizable grossly. Chorionic cysts are found in the placenta of pigs – these are where the secretion of uterine glands is trapped. Prominent mineralization of the membranes is seen and there are necrotic tips where adjoining placentae touch.

THE HORSE

In the horse, the amnion and the chorioallantois are completely separate. The chorionic surface is microcotyledonary and gives it a luxuriant velvety appearance.

THE PIG

The membranes are almost completely fused in the placenta of pigs. The chorionic surface of the porcine placenta has small microscopic projections or villi. They are barely recognizable grossly. Chorionic cysts are found in the placenta of pigs – these are where the secretion of uterine glands is trapped. Prominent mineralization of the membranes is seen and there are necrotic tips where adjoining placentae touch.

THE HORSE

In the horse, the amnion and the chorioallantois are completely separate. The chorionic surface is microcotyledonary and gives it a luxuriant velvety appearance.
The avillous chorioallantoic pouches are formed over the sites of the endometrial cups around the chorion near the attachment site of umbilical cord.

Figure 8. Endometrial cups (left) and corresponding chorioallantoic pouches (right). Horse.

Hippomanes and allantoic pouches are often found in the horse allantois. Hippomanes are present in virtually all equine placentae and are proteinaceous soft calculi. They also occur in the placentae of cows, sheep, and lemurs! Some are found in the amniotic cavity too.

Figure 9. Hippomane from allantoic cavity. Horse.

Occasionally one finds pedunculated structures attached to the chorioallantois on the allantoic side. These are called allantoic pouches. They are incidental in most cases. Yolk sac remnants are less frequently found, and when present are attached to the cord at the junction with the allantois. They often are mineralized.

Figure 10 Yolk sac remnant. Horse.

The umbilical cord of the equine fetus is normally 36 and 83 cm long, and the insertion site should be at the junction of the horn and body of uterus. It can have up to 3 (or 4) twists.

THE COW

The ruminant has a cotyledonary placenta with cotyledons and intercotyledonary regions.

Figure 11 Cotyledons of a bovine placenta with adventitial placentation (left lower).

The exchange unit is the placentome made up of cotyledon (fetal) and caruncle (maternal) components. The cotyledonary (chorionic) surface of the placental membranes often has additional regions or adventitial placentation. This is assumed to be an attempt at compensatory hyperplasia, however it is seen as an age associated change.

The amnion of ruminants is fused with the allantois over the dorsum of the fetus.

The normal intercotyledonary placenta is clear enough to read a book through. The normal cotyledon is red and even. Autolysis makes the placenta appear paler than normal, and autolysis affects the entire placenta, not just one part.

The placentomes develop in 4 rows, two dorsal and two ventral. There are 70-140 placentomes that have an exchange area of more than 18 sq m. Fetal growth is correlated with vascular development within the placentome. Placentomes increase in size during pregnancy and the largest ones are found nearest the attachment of the umbilical vessels. A cotyledon larger than 15 cm diameter in the bovid is regarded as increased in size. After birth, the hypertrophic portion of the caruncles undergoes necrosis.
and is lost in the lochia, usually by day 12 postpartum (PP). Reepithelialization occurs in about 21 days PP. Because the outer part of the caruncle is lost anyway, it can be sampled without damage to the future reproductive capacity of the cow. Such sampling is recommended when there is no placenta for examination. Caruncles should never be twisted off, but the cotyledon can be gently peeled off the caruncle.

Placentomes have a capacity to compensate for loss, and they do so by hypertrophy, as functional area is lost; remaining placentomes become larger. There is also the facility for additional or adventitial placentation to occur.

THE DOG AND CAT

Domesticated carnivores have a zonary placenta. Interdigitation of fetal and maternal tissues occurs in the center of the girdle (called the labyrinth) and there are marginal hematomas at the edges of the girdle. The amnion is separate from the allantois.

![Figure 12. Zonary placenta. Canine](image-url)